Ir arriba
Información del artículo en conferencia

Application of machine learning techniques for asset management and proactive analysis in power systems

G.L. Rajora, P. Calvo-Báscones, C. Mateo, M.A. Sanz-Bobi, R. Palacios, M. Bolfek, D. Vrbičić Tenđera, H. Keko

International Conference on Power System Technology - POWERCON 2022, Kuala Lumpur (Malasia). 12-14 septiembre 2022


Resumen:

Asset Management is one of the foremost vital chapters within the power system's operation and, in general, within energy systems. Electric utilities are a capital-intensive industry with assets such as power transformers, power lines, and switch gears spread across a large geographic area. This paper examines the business drivers, challenges, and innovations for maximizing power network reliability through Asset Management (AM). It presents the main features of an open-source software platform that can be used to evaluate indicators that guide the process of making decisions. This tool is being developed inside a European research project named ATTEST. The machine learning algorithms implemented in the tool for AM and described in the paper can assess indicators for evaluating asset health and prioritize preventive and proactive maintenance strategies. The article describes the tool's outcomes, including an overall health score and risk ranking.


Resumen divulgativo:

Este trabajo ayuda a evaluar indicadores que guían el proceso de toma de decisiones. Esta herramienta se está desarrollando dentro de un proyecto de investigación europeo denominado ATTEST. Los algoritmos de aprendizaje automático se implementan para evaluar la condicion de los activos y priorizar las estrategias de mantenimiento preventivo y proactivo.


Palabras clave: Condition Monitoring, Intelligent Systems, Assets Management, Proactive Analytics, Power Grids.


DOI: DOI icon https://doi.org/10.1109/POWERCON53406.2022.9930034

Publicado en IEEE POWERCON 2022, pp: 1-8, ISBN: 978-1-6654-1776-1

Fecha de publicación: 2022-09-12.



Cita:
G.L. Rajora, P. Calvo-Báscones, C. Mateo, M.A. Sanz-Bobi, R. Palacios, M. Bolfek, D. Vrbičić Tenđera, H. Keko, Application of machine learning techniques for asset management and proactive analysis in power systems, International Conference on Power System Technology - POWERCON 2022, Kuala Lumpur (Malasia). 12-14 septiembre 2022. En: IEEE POWERCON 2022: Conference proceedings, ISBN: 978-1-6654-1776-1


    Líneas de investigación:
  • Industria conectada: análisis del ciclo de vida y gestión de activos
  • Industria conectada: mantenimiento, fiabilidad y diagnostico con auto-aprendizaje

pdf Solicitar el artículo completo a los autores